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1. Business Problem



Business Problem

▪ Advertisers pay websites/app providers 

by click/per download

▪ About $280 billion digital ad spending 

globally per year (2018) and growing [1]

50% of ads 
are never 
seen by a 
human [2]

78% of 
marketers cite 
click fraud as 

their top 
concern [2]

~ $16.4 
billion of 
losses in 

2017 alone [2]

FRAUD

Sources: 
[1] https://www.emarketer.com/content/global-digital-ad-spending-2019
[2] https://medium.com/@aprofita_co/add-fraud-know-your-enemy-or-how-to-recognize-prevent-being-hacked-fc8caf19b1f2

https://www.emarketer.com/content/global-digital-ad-spending-2019
https://medium.com/@aprofita_co/add-fraud-know-your-enemy-or-how-to-recognize-prevent-being-hacked-fc8caf19b1f2


Business Problem (cont.)
▪ TalkingData is China’s largest independent big data platform

▪ Covers ~ 70% of active mobile devices nationwide

▪ Handle about 3 billion clicks per day, of which ~ 90% are potentially 

fraudulent

1. Fake Installs

▪ Botnets: Bots designed to 
impersonate user behavior

▪ App Install Farms: Low paid 
workers install apps through 
mobile ads

2. Fake Clicks

▪ Click Bots
▪ Click Farms
▪ Ghost Websites

3. Fake Impressions

▪ Hidden Adds
▪ Invisible Pixels
▪ Auto-Impression

[1]

Sources: 
[1] https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection
[2] https://medium.com/@aprofita_co/add-fraud-know-your-enemy-or-how-to-recognize-prevent-being-hacked-fc8caf19b1f2

[2]

https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection
https://medium.com/@aprofita_co/add-fraud-know-your-enemy-or-how-to-recognize-prevent-being-hacked-fc8caf19b1f2


2. Dataset & 
Processing



Dataset & Processing

# Feature Description Type
# 

categories
# complete 

rows

1 is_attributed
The target that is to be predicted, 
indicating if the app was 
downloaded

binary 2 184,903,890

2 ip Ip address of click categorical 277,396 184,903,890

3 app App id for marketing categorical 706 184,903,890

4 device
Type id of user mobile phone (e.g., 
iphone 7, huawei mate 7, etc.)

categorical 3475 184,903,890

5 os
Operating system version id of 
user mobile phone

categorical 800 184,903,890

6 channel Channel id of mobile ad publisher categorical 202 184,903,890

7 click_time timestamp of click (UTC) datetime - 184,903,890

▪ Data collected over 4 days

▪ CSV (Train ~ 7.3GB | Test ~ 

2.6GB)

▪ Changed datatypes to lower 

memory types (unint8, unint16, 

unint32)

Too large for local processing!



Dataset & Processing (cont.)
3. Creating virtual 
machine

1. Creating a new 
project in the cloud

2. Creating bucket and 
loading data

4. Creating notebook + 
selecting machine type

Using Google Cloud



3. Exploratory 
Data Analysis



Exploratory Data Analysis
is_attributed:

▪ Target variable is highly imbalanced

▪ Only ~ 0.25% of clicks result in an actual download

Need to balance dataset!

Under-sampling

+ Reduce size of dataset
+ Computationally less 
expensive

- Lose a lot of data

Over-sampling (SMOTE)

+ Do not loose data

- Increases size of dataset
- Synthetic datapoints
- Computationally very 
expensive



Exploratory Data Analysis (cont.)

▪ By far most categories for ip (~ 2x device 
and ~ 4-5x app/os)

▪ Least categories for channel
▪ Grouping of most categories not 

possible (only IDs)

▪ Conversion rate = 
𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑡

𝑡𝑜𝑡𝑎𝑙 𝑐𝑙𝑖𝑐𝑘𝑠𝑡

▪ Total # of downloads goes down in the 
evening

▪ Conversion rate is relatively stable 
distributed (almost uniform)



Exploratory Data Analysis (cont.)

device:
▪ Conversion rate for 100 most popular devices (by click count) is similarly distributed, except for device 1
▪ Device 1 has the most click and the lowest conversion rate, therefore, most fraudulent clicks are within 

that group

Group devices other than 1 or 2 into group ‘other’!



Exploratory Data Analysis (cont.)

ip:
▪ Conversion rate is not dependent on total number of clicks per ip, according to the 100 most popular ips

(by click)
▪ About 10,000 different ips with a very high number of clicks, while the rest is relatively insignificant



Exploratory Data Analysis (cont.)

channel:
▪ Conversion rate is significantly lower for channels with a high absolute number of clicks
▪ For top 20 channels (by number of clicks), conversion rates differ a lot
▪ Channels with lower conversion rates and a high absolute number of clicks might be a sign for potential 

fraud



Exploratory Data Analysis (cont.)

app:
▪ Conversion rate is significantly lower for top 20 apps (by click count)
▪ For top 20 apps (by number of clicks), conversion rates differ a lot
▪ Apps with lower conversion rates and a high absolute number of clicks might be a sign for potential fraud



Exploratory Data Analysis (cont.)

os:
▪ Conversion rate is significantly lower for top ~ 30 operating systems (by click count)
▪ For top 20 os (by number of clicks), conversion rates differ a lot
▪ Os with lower conversion rates and a high absolute number of clicks might be a sign for potential fraud



4. Feature 
Engineering



Feature Engineering
Combination counts

▪ Each ‘click’ contains data about the ‘clicker’ –
IP address, type of device, type of OS, etc.

▪ To better understand the ‘clicker’ attribute 
interaction, we decided to use value counts 
along with combinatorics to identify any 
potentially recurring ‘clickers.’

▪ These features were extracted by using a 
series of for loops to create the correct 
combinatorics sequence, followed by a 
pandas.Series.value_counts() function to 
count the number of times a combination 
occurred.

▪ After scaling, this feature provides a ‘weight’ 
for how often the same combination occurs

▪ Kernel density estimation plots of the 
various combinatorics



Feature Engineering (cont.)
Time to next click

▪ Time to next click looks at the timing interval 
between different combinations of clickers.

▪ For example, if a specific device and IP 
combination clicked on an ad, how long 
before that same device and IP combination 
clicked again?

▪ Using combinatorics and a series of for loops, 
this process was carried out for double, 
triple, quadruple, and quintuple 
combinations.

▪ The NaN values were replaced with a very 
high value – 1e10 to ‘filter’ out click patterns 
that did not recur

▪ This feature searches for timed patterns –
programs that potentially click an ad 
repeatedly every given step of time.

▪ Kernel density estimation plots of the 
various combinatorics



Feature Engineering (cont.)

▪ Some features are cyclical (e.g., 
days, hours etc.)

▪ Without transformation, 
cyclical nature is not conveyed

Encode as cyclical feature!

▪ Deriving a sine transform and 
cosine transform for days and 
hours respectively (2 new 
columns each)

▪ Both transformations needed 
to avoid side effects

▪ Using the two features 
together, all times can be 
distinguished from each other

▪ Difference corresponds to 
expected difference in time

Encoding cyclical continuous features –

Day and hour

si
n

co
s



5. Modeling



Modeling
Binary Logistic Regression

Advantages
▪ Efficient & easy
▪ Highly interpretable
▪ Multicollinearity somewhat 

handled with L2 (Ridge)

Disadvantages
▪ No large feature spaces
▪ Does not handle many categorical 

features well
▪ transformation for non-linear 

relations needed

Random Forest

Advantages
▪ Performs well with noisy data
▪ Reduces overfitting in DTs
▪ Handles continuous and 

categorical features
▪ Handles missing values
▪ Robust to outliers

Disadvantages
▪ More complex and 

computationally expensive
▪ Greedy (prone to overfitting)

XGBoost

Advantages
▪ Improves weak learners
▪ Performs well on imbalanced data
▪ Built in Regularization
▪ Parallel processing makes it faster
▪ Handles missing values
▪ Removes splits that are not above 

threshold gain

Disadvantages
▪ Easily overfits with noisy data
▪ Hard to tune



Modeling (cont.)

▪ Overall baseline performance has difficulty with precision and recall of 
the ‘is_attributed’ prediction. This appears to be due to an anomaly 
detection task.

▪ Random Forest performs noticeably better than Logistic Regression.

Model Performance after Random UndersamplingBaseline Model Performance

▪ Random Undersampling drastically improves both the Random Forest 
and Logistic Regression models, while also improving the size of the 
dataset so it is more manageable.

▪ Oversampling (SMOTE) was also tried and worked well on a 
subsample, however it is a bad choice for such a large dataset.



Modeling (cont.)
Stratified train and test sampling

Data

0

0

1

1

Test set

Train set

▪ Stratified sampling by is_attributed (target 
variable) with a 70/30 train-test split

▪ 50/50 distribution of downloads and non-
downloads in train and test set

Scaling

▪ Standardized count features by removing 
the mean and scaling to unit variance

▪ Zero mean and unit variance
▪ Necessary especially for distance-based 

models

𝑧 =
𝑥 − ҧ𝑥

𝜎



Modeling (cont.)

Dropped 14 features

▪ Based on Beta coefficients and Information Gain, Next Click features appear to have the most impact on the model prediction
▪ Ranked the features by IG and Beta Coefficients respectively and calculated cumulative percentage
▪ Dropped all features that are not within the first 95% for both Random Forest and Logit
▪ Additionally, the time of download was dropped previously to prevent leakage, although this might have had a high IG/Coefficient



Modeling (cont.)

Source: [1] Dal Pozzolo et al. (2015): Calibrating Probability with Undersampling for Unbalanced Classification

XGBoost

▪ XGBoost seems to be overfit as well
▪ Again, undersampling seems to have 

introduced a bias to the models

Random Forest

▪ The model is clearly overfit
▪ Balancing the data previously actually 

introduced a bias to the model 
towards predicting more downloads 
than there actually are [1]

Binary Logistic Regression

▪ Results are very balanced between 
train, test, and cross-validation set

▪ Precision higher than recall, so there 
is more emphasis on capturing all 
downloads in this model



Modeling (cont.)
Model # of parameters # of fits

Logistic Regression 1 30

Random Forest 4 243

XGBoost 3 54

[1]

[1] Plus compared L1 (Lasso) vs L2 (Ridge) regularization.

▪ Model predictions for logistic regression improved by ~1% based on F1-score
▪ Regularization did not change results for Random Forest and XGBoost
▪ Using XGBoost as model for final predictions because of its better generalizability on imbalanced dataset (expecting Holdout set to be 

highly imbalanced)

Binary Logistic Regression Random Forest XGBoost



Modeling (cont.)
▪ Since we are expecting the hold out set to be similarly imbalanced as the training set, our models will most likely deliver 

biased results
▪ Among others, Dal Pozzolo et al. (2015) propose a solution by changing the threshold post downsampling and modeling (e.g., 

by using Bayesian approaches)
▪ 𝑝(𝑦|𝑥, 𝑟𝑒𝑎𝑙) ≠ 𝑝 𝑦 𝑥, 𝑢𝑛𝑑𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑 , therefore, threshold needs to be adjusted to real probability distribution again
▪ For this project, we are looking at the probabilities predicted (for class 1) and set the thresholds accordingly when applying the 

model on the Hold Out set (naïve approach)

Source: [1] Dal Pozzolo et al. (2015): Calibrating Probability with Undersampling for Unbalanced Classification

XGBoost



6. Conclusion



Conclusion & Future Work
Conclusion:
▪ Anomaly detection problems require several methods to correctly classify binary or multiclass 

problems. 
▪ Feature Engineering was important to help improve the performance of the model based on AUC. In 

situations with very large datasets, appropriate feature selection is important to consider in data 
processing.

▪ Sampling is a good solution for helping to deal with very unbalanced datasets to remove 
majority/minority bias. However, sampling also leads to apriori and aposterior probability differences 
due real data vs. manufactured data that affects test set model performance.

Future work:
▪ For future work, we would like to investigate more sophisticated models of thresholding to counteract 

the overfitting that was produced during random undersampling. There are several cases applying 
Bayes’ theorem to reduce the Sample Selection Bias.



Thank you! 
- Questions?


