

Agenda

Project Introduction
System Design
Trading Strategies
Comparison of Results

Future Work

Business Problem

e Build a real-time trading system that is capable of interacting with a
fictitious stock market

e Trading system receives market updates from a server and makes
decisions based on the following different strategies

e The goal of each strategy is to maximize the return on the invested
money

ey -‘. =1

na,

Overview

Trading System (Client)

Orders
bl Order book SEEEEEEEEE .
i - , Bid/Ask Correlation

Exchange Fair market
(Server) values

[Surategy | Classifir

] Crossover
End . . Signal
—— Portfolio EEEE
Orders

Execution time: ~ 0.601 sec from start to end

Order book: Dictionary where key equals symbol and item equals class object (bid/ask book)

Portfolio: Holdings with updated market values, quantity, cash position

‘AAL’

Order book o —IECER—

Bid book Ask book
L { {
New Orders,are Sftored in bid or 44.05: { order1, order5}, 44.20: { order2 },
ask book with price as key | 52.05: { order3) 46.21: { order4 ,
Sorted price lists are maintained } ~*| 41.62: { order6 }
as pointers to the dictionary)

ID lists are maintained as
pointers to the price list

Bid price list:
[

44.05, - [41.62) - - - - :
44.05 4420,

---[52.05}- - - - - - 46.21

Ask price list:

ID lists are in same order as
price lists, so books can be

FPoocoooosooooooooooooooy

queried by ID also (i.e. for price]] |
modifications) ; !
Bid ID list: ! Ask ID list:
l | [;
ID: 1 | B3 @, ====mems=s J
ID: 5, E ID: 2,
ID:3 ----------- ! ID: 4

Portfolio

Checks whether there is enough
cash or stocks in the portfolio

If yes, buys pre-determined
amount of shares (Buy)

If yes, sells all shares in portfolio
(Sell)

Updates quantity, cash position
and market value of position
(avg. best bid and best ask)

If no, update market values, if in
portfolio (Buy)

If no, do nothing (Sell)

‘AAL’

l

Enough cash?

— No

Yes

!

Buy at best ask

Update portfolio

|

In Portfolio?

>

Yes

!

Sell at best bid

Update portfolio

No

Feature Engineering Features:

Dummy:
e Action
e Side
e Exchange
Create dataframe from each . _
symbol With two windows, lengths 5 and 10, compute:
Extract features from each e Standard deviation
symbol e Mean
Recombine data from each e Difference
symbol into single train dataset
For:
e Quantity
e Price

e News

Classifier

Create dataframe for each symbol
Calculate response for each row
Combine with extracted features

Train classifier on first 80% of data,
test on last 20%

Defining the response:

1.

Calculate percent change on price for consecutive
orders of the same stock, ignoring side/action

If change > 5%, correct prediction is “Buy”
If -5% < change < 5%, correct prediction is “Hold”

If change < -5%, correct prediction is “Sell”

Training the classifier:

1.

Extract features from each symbol for every row after
minimum window is met (10 rows)

Predict “Buy,” “Hold,” or “Sell” using those features as a
multiclass problem

Best performance on gradient boosting classifier
a. 92% accuracy
b. 96% F1 score for “Hold”

c. 77%F1 score for “Buy” and “Sell”

Crossover Strategy

Nasdaq GS @ StockCharts.com

) (Daily) 532,36y

e Short (5 orders) and long (10 —MA(200) 463,76 f
—MA(50) 534,19 p"

)
orders) rolling mean price

o diff = short - long
e “Buy” when diff >5%
e “Hold” when -5% < diff <5%

e “Sell” when diff <-5%

https://www.investopedia.com/articles/active-trading/052014/how-use-moving-average-buy-stocks.asp

Rolling dataframe for classifier and crossover strategies

Index | Symbol | Action Price Exchange | Side Recommendation

e Create dict with keys = symbols, ' MR A M ° ol

values = empty dataframes +
2 ‘AAPL’ A 4745 | 1 B “Hold”

e Append new orders to dataframe
corresponding to each symbol

Index | Symbol | Action Price Exchange | Side Recommendation
e Hold before dataframe reaches

length =10 1 ‘AAPL’ | A 44.08 | 2 B “Hold”

e Once length = 10, extract features

e Run classifier or crossover strategy 10 ‘AAPL” | A 73.22 | 3 S “Sell”
on last row l
e Make each trading strategy a class Index | Symbol | Action | Price | Exchange | Side | Recommendation

with a handle_market_order method
and a rolling_df_dict instance
attribute

2 ‘AAPL’ A 4745 | 1 B “Hold”

11 ‘AAPL” | A 7192 | 2 S “Sell”

Correlation strategy

Initial exploration:

e Calculate returns for each stock for the given
periods

Pairs included in Correlation e Determine correlation coefficients between the
the strategy coefficient returns of the stocks

(‘BMRN’, ‘GOOGL’) 0.657 e Identify pairs with highest correlation
(CSCO!, 'ISRG') 0.475 Real-time implementation:

e Use window of past 10 prices to calculate the z-
score of the prices for the incoming stock and its

('CERN','CTRP) 0.436 partner

(CTXS', 'INTC) 0.440

(ADI', 'DISCK) 0.427 e Calculate delta between the z-score prices for the
pair of the incoming stock

'ALXN', 'FAST' 0.400
(, FAST) e Send buy/sell/hold signal based on a predefined

threshold for the delta between the z-score prices

Fine-tuning of the correlation strategy

Price Relationship between CTXS and INTC

—— Delta Prices

e Tested different thresholds and — Mean Delta
1/-1 yields the best results

e Delta>1:“Buy” INTC and “Sell”
CTXS as CTXS increases while
INTC doesn't or INTC decreases
while CTXS doesn't

e Delta <-1: Decreasing delta: “Sell”
INTC and “Buy” CTXS as CTXS
decreases while INTC doesn't or
INTC increases while CTXS
doesn't

Delta between z-Scores

Tt

Periods

e 1 >delta>-1: “Hold"

Our strategies come with different pros and cons

Strategy Return Max frequency Insights
Cross-Over 42.2% 10 order/sec e High frequency, low volume strategy
initial cash: $100k e Data storage: pandas dataframes 10 rows

trx amount: 15

Classification 262.6% 3.3 order/sec e High frequency, low volume strategy
initial cash: $100k e Data storage: 10 rows of 9 columns in pandas
trx amount: 10 dataframe
e Feature creation and prediction slows down
execution time
Correlation 75.1% 100 order/sec e Low frequency, high volume strategy
initial cash: $100k e Data storage: 10 prices in a dictionary of deques

trx amount: 200 by symbol; no other data required

Moving forward we want to make a few improvements

e Closed loop: Create a feedback loop of the transactions made by our system back into our
order book

e Multiple exchanges: Make the trading system more fine grained by acknowledging different
exchanges and having separate order books for each

e Transaction fees: Consider transaction fees when calculating the return on investment of a
strategy

e Threading: Implement threading to be able to process multiple incoming orders

e Cloud computing: Improve runtime using cloud technology

