
REAL-TIME
TRADING SYSTEM
Implementation of different trading

strategies in a real-time system

Peter Eusebio, Julian Kleindiek, Markus Wehr

June 9th, 2020

Project Introduction

System Design

Trading Strategies

Comparison of Results

Future Work

Agenda

● Build a real-time trading system that is capable of interacting with a
fictitious stock market

● Trading system receives market updates from a server and makes
decisions based on the following different strategies

● The goal of each strategy is to maximize the return on the invested
money

Business Problem

System Design

Overview

Trading System (Client)

Exchange
(Server)

Order book

Strategy

Portfolio

Correlation

Classifier

Crossover

Orders

Orders

Bid/Ask

Signal

Fair market
values

Execution time: ~ 0.601 sec from start to end

Order book: Dictionary where key equals symbol and item equals class object (bid/ask book)

Portfolio: Holdings with updated market values, quantity, cash position

Start

End

Order book Order

Bid book Ask book

Buy Sell

{
44.05: { order1, order5 },
52.05: { order3 }
}

{
44.20: { order2 },
46.21: { order4 },
41.62: { order6 }
}

‘AAL’

Bid price list:
[
44.05,
44.05,
52.05
]

Ask price list:
[
41.62,
44.20,
46.21
]

Bid ID list:
[
ID: 1,
ID: 5,
ID: 3
]

Ask ID list:
[
ID: 6,
ID: 2,
ID: 4
]

• New orders are stored in bid or
ask book with price as key

• Sorted price lists are maintained
as pointers to the dictionary

• ID lists are maintained as
pointers to the price list

• ID lists are in same order as
price lists, so books can be
queried by ID also (i.e. for price
modifications)

Portfolio

SignalBuy Sell

‘AAL’

• Checks whether there is enough
cash or stocks in the portfolio

• If yes, buys pre-determined
amount of shares (Buy)

• If yes, sells all shares in portfolio
(Sell)

• Updates quantity, cash position
and market value of position
(avg. best bid and best ask)

• If no, update market values, if in
portfolio (Buy)

• If no, do nothing (Sell)

Enough cash? In Portfolio?

Buy at best ask Sell at best bid

Yes Yes

Update portfolio Update portfolio

No No

Trading Strategies

Features:

Dummy:

● Action
● Side
● Exchange

With two windows, lengths 5 and 10, compute:

● Standard deviation

● Mean

● Difference

For:

● Quantity

● Price

● News

Feature Engineering

1. Create dataframe from each
symbol

2. Extract features from each
symbol

3. Recombine data from each
symbol into single train dataset

Defining the response:

1. Calculate percent change on price for consecutive
orders of the same stock, ignoring side/action

2. If change > 5%, correct prediction is “Buy”

3. If -5% < change < 5%, correct prediction is “Hold”

4. If change < -5%, correct prediction is “Sell”

Training the classifier:

1. Extract features from each symbol for every row after
minimum window is met (10 rows)

2. Predict “Buy,” “Hold,” or “Sell” using those features as a
multiclass problem

3. Best performance on gradient boosting classifier

a. 92% accuracy

b. 96% F1 score for “Hold”

c. 77% F1 score for “Buy” and “Sell”

Classifier

1. Create dataframe for each symbol

2. Calculate response for each row

3. Combine with extracted features

4. Train classifier on first 80% of data,
test on last 20%

Crossover Strategy

● Short (5 orders) and long (10
orders) rolling mean price

○ diff = short - long

● “Buy” when diff > 5%

● “Hold” when -5% < diff <5%

● “Sell” when diff < -5%

https://www.investopedia.com/articles/active-trading/052014/how-

use-moving-average-buy-stocks.asp

https://www.investopedia.com/articles/active-trading/052014/how-use-moving-average-buy-stocks.asp

Rolling dataframe for classifier and crossover strategies

● Create dict with keys = symbols,
values = empty dataframes

● Append new orders to dataframe
corresponding to each symbol

● Hold before dataframe reaches
length = 10

● Once length = 10, extract features

● Run classifier or crossover strategy
on last row

● Make each trading strategy a class
with a handle_market_order method
and a rolling_df_dict instance
attribute

Index Symbol Action Price Exchange Side Recommendation

1 ‘AAPL’ A 44.08 2 B “Hold”

...

10 ‘AAPL’’ A 73.22 3 S “Sell”

Index Symbol Action Price Exchange Side Recommendation

1 ‘AAPL’ A 44.08 2 B “Hold”

2 ‘AAPL’ A 47.45 1 B “Hold”

Index Symbol Action Price Exchange Side Recommendation

2 ‘AAPL’ A 47.45 1 B “Hold”

...

11 ‘AAPL’’ A 71.92 2 S “Sell”

Initial exploration:

● Calculate returns for each stock for the given
periods

● Determine correlation coefficients between the

returns of the stocks

● Identify pairs with highest correlation

Real-time implementation:

● Use window of past 10 prices to calculate the z-

score of the prices for the incoming stock and its

partner

● Calculate delta between the z-score prices for the

pair of the incoming stock

● Send buy/sell/hold signal based on a predefined

threshold for the delta between the z-score prices

Pairs included in
the strategy

Correlation
coefficient

(‘BMRN’, ‘GOOGL’) 0.657

('CSCO', 'ISRG') 0.475

('CTXS', 'INTC') 0.440

('CERN', 'CTRP') 0.436

('ADI', 'DISCK'), 0.427

('ALXN', 'FAST') 0.400

Correlation strategy

Fine-tuning of the correlation strategy

● Tested different thresholds and
1/-1 yields the best results

● Delta >1: “Buy” INTC and “Sell”
CTXS as CTXS increases while
INTC doesn't or INTC decreases
while CTXS doesn't

● Delta <-1: Decreasing delta: “Sell”
INTC and “Buy” CTXS as CTXS
decreases while INTC doesn't or
INTC increases while CTXS
doesn't

● 1 > delta > -1: “Hold”

Comparison of Results

Our strategies come with different pros and cons

Strategy Return Max frequency Insights

Cross-Over 42.2%
initial cash: $100k

trx amount: 15

10 order/sec ● High frequency, low volume strategy
● Data storage: pandas dataframes 10 rows

Classification 262.6%
initial cash: $100k

trx amount: 10

3.3 order/sec ● High frequency, low volume strategy
● Data storage: 10 rows of 9 columns in pandas

dataframe
● Feature creation and prediction slows down

execution time

Correlation 75.1%
initial cash: $100k

trx amount: 200

100 order/sec ● Low frequency, high volume strategy
● Data storage: 10 prices in a dictionary of deques

by symbol; no other data required

Future Work

● Closed loop: Create a feedback loop of the transactions made by our system back into our

order book

● Multiple exchanges: Make the trading system more fine grained by acknowledging different

exchanges and having separate order books for each

● Transaction fees: Consider transaction fees when calculating the return on investment of a

strategy

● Threading: Implement threading to be able to process multiple incoming orders

● Cloud computing: Improve runtime using cloud technology

Moving forward we want to make a few improvements

